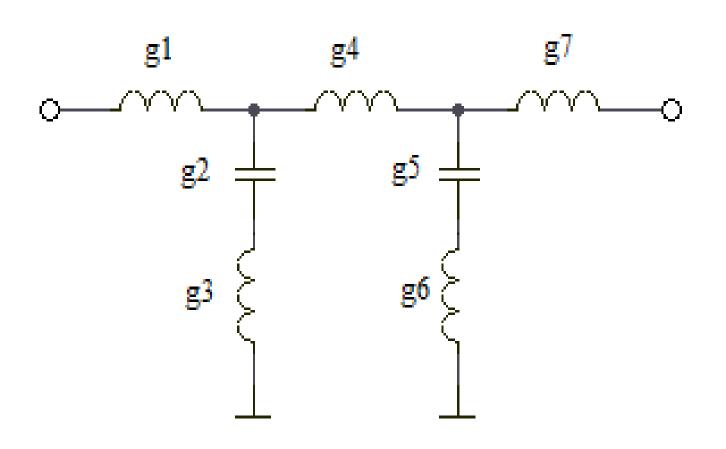
Разработка высокоизбирательных LC фильтров с постоянным ГВЗ

Студент группы ФРМ-702-О

Зайцев К.В.

Научный руководитель:

к.т.н., Яковлев А.Н.


Блок-схема процесса проектирования фильтра

Требования к параметрам фильтра

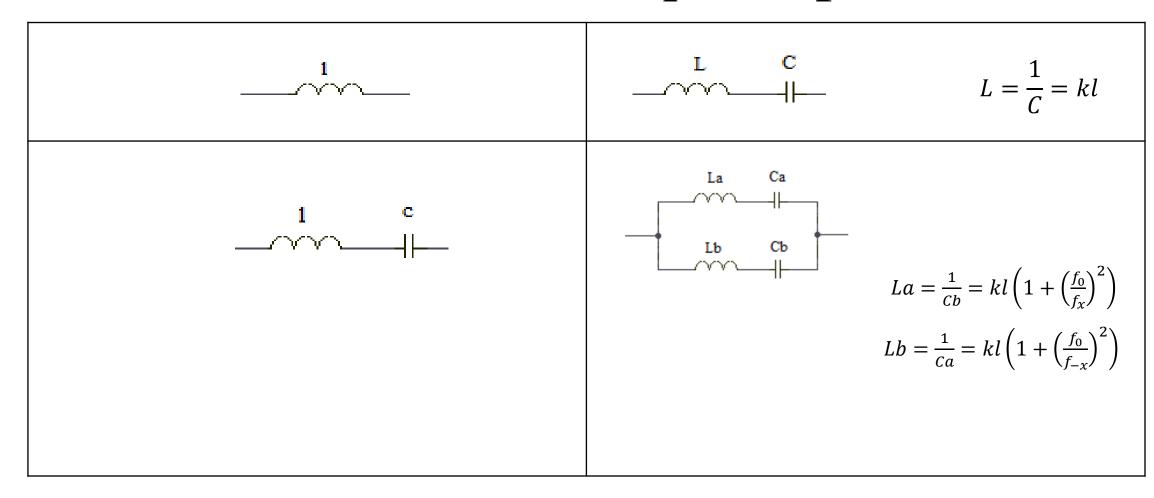

№	Наименование параметра	Обозначение	Значение		
1.	Центральная частота	F_0	70 МГц		
2.	Полоса пропускания по уровню 1 dB	δ	10 МГц ± 0,3		
3.	Коэффициент прямоугольности по уровню 1/40 dB	Кпр	не более 2,5		
4.	Групповое время задержки (ГВЗ)	τ	не более 5 нс		
5.	Сопротивление нагрузки	Rн	50 Ом		
6.	Вносимые потери в полосе пропускания	авн	не более 8 дБ		

Схема фильтра прототипа

Коэф-ты фильтра прототипа	Значение				
g1	0,4421				
g2	0,9933				
g3	0,06098				
g4	1,138				
g5	0,8346				
g6	0,8346				
g7	0,3433				

Преобразование фильтра прототипа в полосовой фильтр

Преобразование фильтра прототипа в полосовой фильтр

k- коэффициент преобразования полосы пропускания

$$k=rac{f_0}{\Delta f}$$
, где f_0 - центральная частота, Δf - ширина полосы пропускания

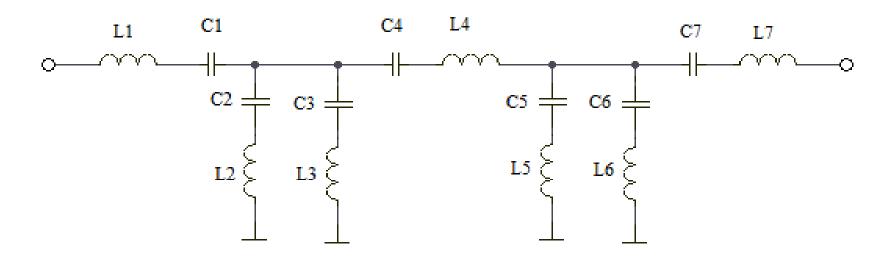
 f_{χ} , $f_{-\chi}$ - границы полосы задерживания

$$f_x = \sqrt{f_0^2 + \left(\frac{\Delta f_x}{2}\right)^2} + \frac{\Delta f_x}{2}$$

$$f_{-x} = \sqrt{f_0^2 + \left(\frac{\Delta f_x}{2}\right)^2 - \frac{\Delta f_x}{2}}$$

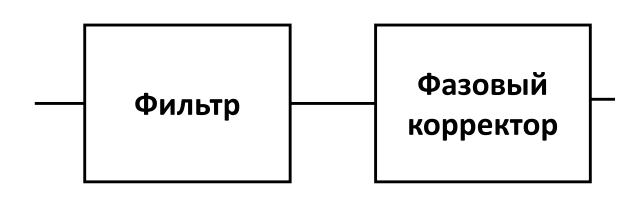
Расчет значений элементов схемы

$$C_i = C_i' k K_C$$

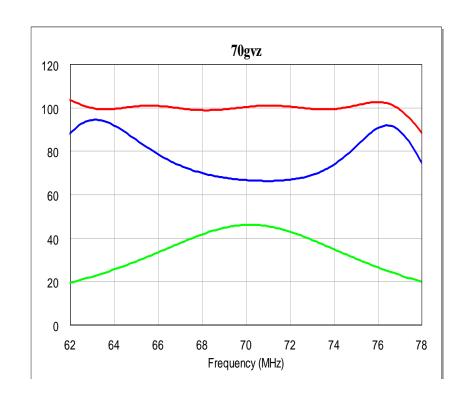

$$L_i = L_i' k K_L$$

где K_C , K_L — денормирующие коэффициенты

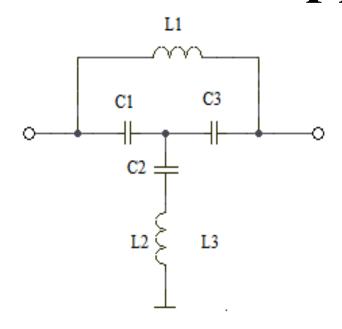
$$K_L = \frac{RH}{2\pi f_0}$$


$$K_C = rac{1}{2\pi R$$
н f_0

Результаты расчетов элементов схемы фильтра



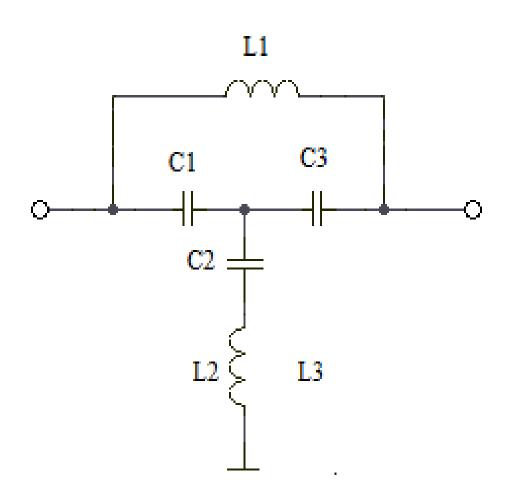
Элемент	C1	C2	C3	C4	C5	C6	C7	L1	L2	L3	L4	L5	L6	L7
Значение	22 пФ	20 пФ	15 пФ	4,7 пФ	68 пФ	39 пФ	16 пФ	240 нГн	330 нГн	240 нГн	1000 нГн	130 нГн	75 нгН	300 нГн


Способ реализации постоянного ГВЗ

$$T_{\Sigma} = T_{\Phi} + T_{\Phi K}$$

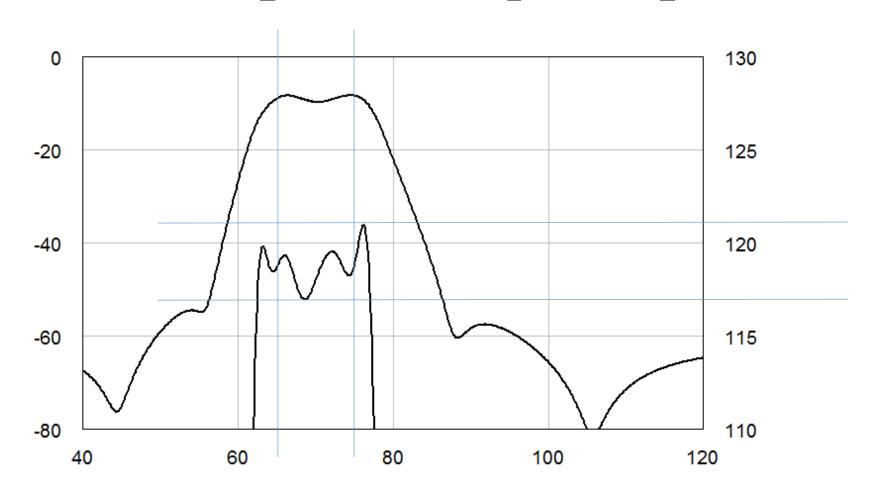
Расчет значений элементов фазового корректора

$$L_1 = \frac{4aK_L}{x^2 - 3a^2}$$

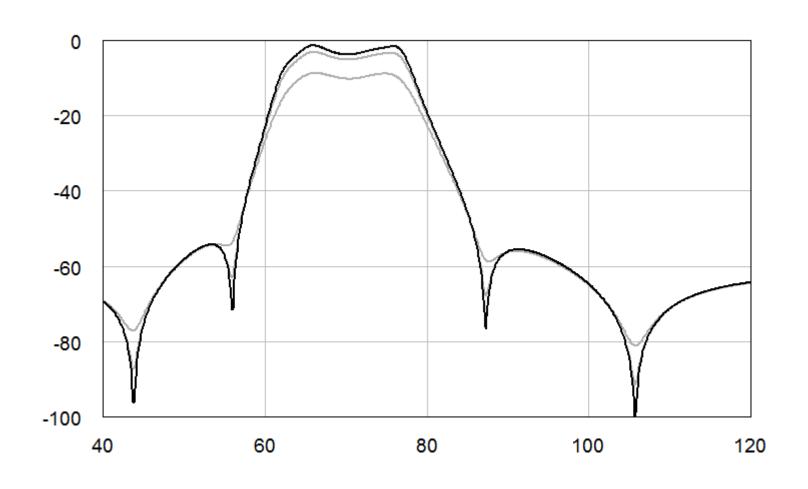

$$L_2 = \frac{K_L}{4a}$$

$$C_1 = C_3 = \frac{K_C}{2a}$$

$$C_2 = \frac{4aK_C}{a^2 - x^2}$$


а, х — коэффициенты, характеризующие местоположения нулей и полюсов функции коэффициента передачи фазового корректора и определяются на основе шаблонов

Результаты расчета значений элементов схемы фазового корректора



Элемент	Значение				
C1	300 пФ				
C2	15 пФ				
C3	300 пФ				
L1	33 нГн				
L2	330 нГн				

Результаты схемотехнического моделирования фильтра

Зависимость АЧХ фильтра от потерь в элементах (добротность 300, 100 и 30)

Заключение:

Выполнены расчеты элементов LC фильтра и фазового корректора в соответствии с заданными техническими требованиями к частоте, избирательности, потерям в полосе пропускания и требованиями к групповому времени задержки. Выполнено схемотехническое моделирование и проведен анализ соответствия параметров фильтра заданным значениям.

Список литературы:

- 1. **Бессонова Е.А.** Расчет фильтров: Учебное пособие. Петропавловск-Камчатский: КамчатГТУ, 2004.-49с
- **2. Зааль Р.** Справочник по расчету фильтров [текст] / Рудольф Зааль; пер. с нем. Ю. В. Камкина. М.: Радио и связь, 1983. 752 с.
- **3. Ханзел Г. Е.** Справочник по расчету фильтров [текст] / Пер. с англ. под ред. А.Е. Знаменского. М.: Сов. радио, 1974. 288 с.
- **4. Аржанов В.А., Ясинский И.М.** Электрические фильтры и линии задержки: Учеб. Пособие, Омск: Изд-во ОмГТУ, 2000-372с.
- **5.** Сильвинская К.А., Голышко З.И. Расчет фазовых и амплитудных корректоров: Справочник, Москва: Изд-во «Связь», 1969 -115с.
- 6. Современная теория фильтров и их проектирование [текст] / под ред. Темеша Г., Митра С. Пер. с англ. М.: Мир, 1977. 560 с.